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Progress in nanotechnology depends on the capability to fab-
ricate, position and interconnect nanometre-scale structures. 
A variety of materials and systems such as nanoparticles, 

nanowires, plasmonic materials and organic semiconductors, as 
well as two-dimensional materials such as graphene and transition-
metal dichalcogenides are finding applications in nanoelectronics, 
nanophotonics, organic electronics and biomedical applications. 
The success of many of the above applications relies on the exist-
ence of suitable nanolithography approaches. However, patterning 
materials with nanoscale features aimed at improving integration 
and device performance poses several challenges. The limitations 
of conventional lithography techniques related to resolution, oper-
ational costs and lack of flexibility to pattern organic and novel 
materials have motivated the development of unconventional 
fabrication methods1–3.

Since the first patterning experiments performed with a scan-
ning probe microscope in the late 1980s, scanning probe lithography 
(SPL) has emerged as an alternative type of lithography for academic 
research that combines nanoscale feature-size, relatively low techno-
logical requirements and the ability to handle soft matter, from small 
organic molecules to proteins and polymers. Scanning probe lithog-
raphy experiments have provided striking examples of its capabili-
ties such as the ability to pattern three-dimensional relief structures 
with nanoscale features4, the fabrication of the smallest field-effect 
transistor5 or the patterning of proteins with 10-nm feature size6.

Figure  1a shows a general scheme of SPL operation. There is 
a variety of approaches to modify a material at the probe/surface 
interface, which have generated several SPL methods. Scanning 
probe lithographies can be either classified by emphasizing the dis-
tinction between the general nature of the process, chemical versus 
physical, or by considering if SPL implies the removal or addition of 
material. However, we consider it is more inclusive and systematic 
to classify the different SPL methods in terms of the driving mecha-
nisms used in the patterning process, namely thermal, electrical, 
mechanical and diffusive (Fig. 1b).

Challenges in nanoscale lithography
The workhorse of large-volume complementary metal–oxide–
semiconductor fabrication, optical lithography at a wavelength of 
192 nm, has reached the physical limits in terms of minimal achiev-
able pitch of a single patterning run of about 80 nm. To make denser 
integrated circuits and additionally to keep Moore’s law fulfilled for 
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feature sizes approaching the single-digit nanometre range, multi-
patterning extensions such as double- and triple-patterning have 
been introduced with the acceptance of the inherently higher man-
ufacturing costs. Alternatively, the technically challenging switch to 
shorter wavelengths in the extreme ultraviolet spectrum at 12.5 nm 
is considered a viable although extremely costly possibility for the 
next years7. 

Economic reasons dictate throughputs of more than 100 wafers 
per hour corresponding to >1012 μm2 h–1 for high-volume-produc-
tion techniques (Fig.  2a). This mask-based high-volume lithogra-
phy environment requires accompanying techniques for flexible 
low-volume production, mask fabrication and prototyping of the 
next-generation devices. These applications require versatile tools 
without the overhead to produce masks for each patterning step, 
so called maskless lithography technologies. Their throughput 
scales phenemenologically with the achievable resolution accord-
ing to a power law as was first recognized by Tennant8. Among 
the maskless methods the dominating technique is electron-beam 
lithography (blue shapes in Fig.  2a), which uses a Gaussian elec-
tron beam or variable shaped beams for sub-20-nm resolution or 
high-throughput demands, respectively. At high resolutions, the 
trade-off between resolution and throughput is determined by the 
sustainable beam current and resist sensitivity. Both higher currents 
and enhanced sensitivity through chemical amplification (chemi-
cally amplified resists) lead to a reduction in resolution, limiting 
the throughput at high resolutions. Even higher resolutions in the 
single-digit nanometre range can be obtained by using inorganic 
resists or electron-beam-induced deposition9, albeit at very limited 
throughputs of about 1 μm2 h–1 and high costs. At present, massively 
parallel approaches are under study with the goal to scale electron-
beam lithography towards high-volume production10,11. At the same 
time alternative nanopatterning methods have been explored. Novel 
beam-based methods using He (ref. 12) and Ne (ref. 13) ions instead 
of electrons promise high resolution and enhanced resist sensitivity.

In parallel to the developments of beam-based methods, SPL 
methods are receiving renewed interest because of their flexibility 
to handle novel materials, and their inherent inspection and posi-
tioning capabilities. Since their invention, scanning probe micro-
scopes have been used to image, modify and manipulate surfaces 
at the nanometre and atomic scales. Atomic-scale manipulations 
have been performed in ultrahigh vacuum although the exceed-
ingly small throughput values (Fig.  2a) greatly limit their impact 
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and applications. Recent developments with techniques operat-
ing in ambient atmosphere have shown that some scanning probe 
nanolithography approaches could also be competitive in terms 
of resolution, throughput and versatility of the materials that can 
be patterned. This makes SPL an appealing type of nanolithogra-
phy for research and some niche technological applications. For 
example, thermal SPL has achieved a resolution of 10 nm while the 
throughput is in the 104–105 μm2 h–1 range.

The role of scanning probe lithography
Scanning probe lithography includes several approaches to pattern 
materials with nanoscale resolution (Fig. 1b). These approaches have 
a common thread, which is the use of a sharp scanning probe to pro-
duce local modifications on a surface. The variety of SPL approaches 
arises from two main factors. First, the wealth of processes that could 
be controlled by using a sharp probe in contact or near contact with a 
nanoscale region of a sample surface. The processes involved include 
mechanical, thermal, electrostatic and chemical interactions, or dif-
ferent combinations of them.  Second, the various methods that con-
trol the position of the scanning probe relative to the underneath 
surface, for example, through quantum tunnelling between the 
probe and a conductive surface as in the scanning tunnelling micro-
scope, or by controlling the force between the probe and the surface 
as in the standard atomic force microscope (AFM). In fact, most of 
the current SPL methods rely on the use of an AFM.

The potential and variety of the methods available to scanning 
probe microscopy to locally modify surfaces was already evident in 
the early experiments. However, many of those approaches albeit 
inspirational because of their atomic-scale manipulation capabilities 
have been proven to be unpractical for any large-scale patterning or 
device applications. In this Review, the focus is on the SPL meth-
ods that are robust and versatile enough to make patterns and/or 
devices with a high degree of reproducibility and show a potential 
for scalability and compatibility with ambient conditions and novel 
materials. These methods are collectively called advanced SPL.

Compared with other techniques such as electron-beam lithog-
raphy, the principal advantage of SPL is that it is a single-step process 

with sub-10-nm resolution. Most of the SPL writing processes are 
‘direct write’ in nature, creating structures without the need for 
subsequent development steps. This is, in particular, relevant for 
a direct patterning or conversion of functional materials such as 
graphene or other two-dimensional materials, which are known 
for being sensitive to resist residues14. Most SPL methods operate 
under (controlled) atmospheric conditions, which reduces the tool 
overhead and cost, and facilitates applications. The constituents of 
the atmosphere may even provide the functionality for some SPL 
methods such as for bias SPL or oxidation SPL. The simplicity of the 
techniques also allows for straightforward parallelization schemes. 
Furthermore, the scanning probe microscope is capable of detect-
ing surface features down to atomic resolution. In contrast to beam-
based methods, imaging and patterning in SPL are orthogonal, that 
is, the imaging process neither influences the written structures nor 
involves a partial writing operation. Together, the non-destructive 
imaging capability and the direct writing enables the concept of so-
called closed-loop lithography to be established, that is, a lithogra-
phy tool with inherent feedback of the writing result to optimize 
the writing stimuli during the patterning process. This tool is thus 
capable of autonomously controlling the writing process, improving 
dramatically the ease of use to create complex and high-resolution 
nanoscale structures.

In general, the ability of SPL to image the surface of a material, 
to fabricate complex patterns in  situ with sub-10-nm precision in 
size and single-nanometre accuracy in positioning, and to allow 
post-patterning in situ metrology is rather unique. Finally, SPL is 
capable of patterning a large variety of materials, including poly-
mers and biological matter. Applications of SPL to pattern silicon15, 
graphene16, piezoelectric/ferroelectric ceramics17, polymers4,18–21 
and proteins6 have been demonstrated. The capability of using the 
same SPL set-up to pattern different materials at the same time is 
also very appealing22.

Thermal and thermochemical SPL
Thermal SPL (t-SPL) was first developed for data-storage pur-
poses in the early 1990s23. In that work it was understood that the 
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Figure 1 | Scanning probe lithography. a, Schematic of scanning probe lithography (SPL) where imaging and patterning applications are orthogonal. 
b, Classification of SPL methods according to the dominant tip–surface interaction used for patterning, namely electrical, thermal, mechanical and 
diffusive processes.
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transport of heat is only significant if the tip and the sample are 
in intimate contact. Thus, the heat is highly localized at the tip–
sample contact area, which is of the order of a few nm2 due to the 
nanoscale dimensions of the apex of the scanning probe microscope 
tip. Furthermore, similar to the case of light, manipulation by heat 
does not require the presence of conductive surfaces and thus is 
widely applicable.

Heat is used in t-SPL to modify a material mechanically. In 
thermochemical SPL (tc-SPL), also known as thermochemical 
nanolithography, heat is used to locally change the chemistry of 
a material24,25. In the early experiments, laser heating with pulse 
times of microseconds and linear scan speeds of 25 mm s–1 dem-
onstrated the high-speed potential of thermomechanical writing 
schemes. Today, heaters integrated into silicon cantilevers are used 
(Fig. 3a), which facilitates the control of the writing parameters and 
improves the resolution. The tip is resistively heated by a current 
flowing in the cantilever legs, which are highly doped except for 
the region where the tip is positioned. In silicon, the maximum 
sustainable temperature at the heater position is limited by electro-
migration of the dopants to 800–1,000 °C, depending on the type 
of dopant. Typical thermal time constants of the integrated heat-
ers range from 5 to >100 μs (ref. 24), allowing for fast switching 
of the thermal stimulus. The effective temperature at the substrate 
surface depends on the ratio of thermal resistance of the substrate 
and of the combined resistance of the tip and tip/sample inter-
face24. For sharp tips with radii on the order of 5 nm, and polymer 
films thicker than the lateral size of the contact, the temperature 
of the heater is reduced by about a factor of two at the polymer 
surface. Thus, highly temperature sensitive materials are required 
for high resolution. We also note that, in ambient conditions, the 
thermal heater may also act as a height sensor and imaging can be 
achieved by using only electrical control without the need for an 
optical-lever set-up.

Figure 3 summarizes some recent achievements in t-SPL. In all 
cases presented the highly localized heat stimulus is used to trig-
ger a nanoscale reaction, which consists of excitation or cleavage of 
physical or chemical bonds, as well as more complex reactions such 
as crystallization processes. We distinguish the thermal patterning 

methods according to the characteristics of the created patterns. 
If the thermal process results in efficient removal of material for 
the purpose of generating a topographical pattern, the method is 
termed t-SPL. If the process is purely thermochemical in nature25 
and the resulting patterns are made of a material with struc-
ture and chemistry different from the original one, we term the 
method tc-SPL. In t-SPL26,27 either molecular glass resists4 or the 
thermally responsive polymer poly(phthalaldehyde)28 are used as 
a substrate, and they perform exceptionally well for topographic 
patterning. In poly(phthalaldehyde), the fission of a single bond is 
amplified by spontaneous decomposition of the remaining poly-
mer chains resulting in a highly efficient patterning process. The 
patterns shown in Fig. 3b contain 880 × 880 pixels and were writ-
ten in less than 12  seconds, demonstrating the high throughput 
of the approach29. Throughputs are in the range of 5 × 104 μm2 h–1 
(Fig. 2b). Patterning at a half pitch down to 10 nm without prox-
imity corrections was demonstrated27. Other milestones towards 
technical readiness of the technique are the stitching of pattern-
ing fields at <10 nm precision30 and a high-quality pattern transfer 
into the underlying silicon substrate at high resolution and low line 
edge roughness (Fig. 3c)27.

A key example of tc-SPL is the use of hot probes for on-demand 
patterning of field-effect transistors from a pentacene precursor as 
shown in Fig. 3d31. Thermal reduction of functionalized graphene 
by tc-SPL is also perceived as an attractive way to pattern graphene 
with nanoscale precision. Reduced graphene oxide32 (Fig. 3e) and 
reduced graphene fluoride33 nanoribbons have been fabricated with 
a width as low as 12 nm and tunable conductivity over four orders 
of magnitude. Field-effect transistors have also been demonstrated 
by using these nanowires. Furthermore, direct writing of ferroelec-
tric and/or piezoelectric ceramic nanostructures on plastic, glass 
and silicon was demonstrated by local tc-SPL-induced crystalliza-
tion17 (Fig. 3f). Recently, tc-SPL was also used to deprotect active 
groups such as carboxylic acid25,34 and amine groups35, which can 
subsequently be used for biochemical conjugation of nano-objects. 
Multifunctional patterns of proteins, DNA and C60 have been 
obtained with a resolution down to 10 nm at patterning speeds up 
to millimetres per second35.
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Greyscale chemical and topographical patterning. A particular 
strength of t-SPL and tc-SPL is the precise control of the patterning 
parameters at the nanometre-size scale and microsecond timescale. 
The control is due to the highly reproducible motion of the canti-
lever and thus the repeatability of the interaction times and forces, 
as well as the stability of the heater temperature. In the lithography 
application this high level of control enables the production of three-
dimensional greyscale relief patterns28 even on rough surfaces, as 
well as the production of chemical gradients20 in a single patterning 
run. By exploiting the ‘closed-loop lithography’ scheme mentioned 
above, the absolute patterning depth in a poly(phthalaldehyde) film 
can be controlled to about single-nanometre precision, less than the 
linear dimension of a single resist molecule. An example is shown in 
Fig. 4a depicting the final topographical pattern imaged during the 
closed-loop writing process. Using the same colour scale, the inset 
shows the programmed bitmap, a portrait of Richard Feynman who 
in 1959 wrote a visionary essay about the possibilities of manipu-
lating matter at the micro, nano and atomic scales. The precision 
achieved can be seen from the cross-sectional profiles of both bit-
maps in the bottom panel of Fig. 4a. The three-dimensional shape 
of the topographical relief structures was exploited for a precise 
and oriented positioning of Au nanorods into t-SPL-defined guid-
ing structures36. Figure  4b shows a scanning electron micrograph 

of bare Au nanorods placed with an accuracy of 10 nm on the sili-
con substrate after removal of the polymer template containing the 
guiding structures. Another application of the precise depth control 
is multilevel data storage, encoding three-bit levels into the depth of 
the indents37. A bit error rate of 10–3 could be achieved.

A similar control was obtained for the degree of chemical func-
tionalization in a thermally sensitive polymer (Fig. 4c)20. The heated 
tip deprotects a functional group in the polymer to unmask primary 
amines, which serve as attachment sites for subsequent selective 
functionalization with the desired species of molecules and nano-
objects. The density of amine groups on the surface is precisely con-
trolled by the applied temperature and scanning speed, and can be 
predicted by using an Arrhenius model for the thermally activated 
chemical reaction. To visualize the programmed gradient of amines 
on the polymer surface, the deprotected functional amine groups 
are fluorescently labelled using a N-hydroxysuccinimide fluores-
cent dye and imaged with fluorescence microscopy. In Fig. 4c, we 
show the resulting optical image of a fluorescent ‘Mona Lisa’. Other 
examples are the conversion of precursors into semiconducting 
polymers, thus enabling the direct three-dimensional writing of 
polymers relevant for organic electronics devices (Fig.  4d,e). This 
was first demonstrated by direct patterning of fluorescent structures 
from a poly-p-phenylene vinylene precursor material18,19,22.
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Bias-induced SPL
Force microscopy offers a flexible and versatile interface to con-
trol chemical processes at the nanoscale. The small size of the 
AFM tip’s apex and the proximity of the surface facilitates the gen-
eration of extremely high electrical fields and, in conducting sam-
ples, a focused electron current. Remarkably, high electric fields 
~10 V nm–1 (10 GV m–1) can be achieved by applying moderate volt-
ages (~10 V). Those fields and/or the associated electron currents are 
used to confine a variety of chemical reactions and/or to decompose 
gas38,39 or liquid40 molecules that lead to either a locally controlled 
deposition or to the growth of material on a surface. Furthermore, 
bias-induced SPL (b-SPL) experiments can be performed in ambi-
ent or liquid environments, which, in turn, increases the number of 
available chemical species.

There is a large variety of methods that combine the application of 
a voltage with a tip/surface interface to produce nanoscale features. 
The electric bias across the tip/surface interface can induce local 

and bulk electrochemical processes such as the anodic oxidation of 
semiconductors41,42 and metals42, as well as the reduction of earth 
metal oxides43, metal salts44 and ionic conductors45. Experimental 
schemes that are closer to the conventional electrochemical set-ups 
with reference, counter and working electrodes are also being used 
to deposit metal nanostructures46,47. In this context, b-SPL has been 
used to locally catalyse the reduction of insulating graphene oxide 
in the presence of hydrogen. Nanoribbons with widths ranging 
from 20 to 80 nm and conductivities of >104 S m–1 have been suc-
cessfully generated, and a field-effect transistor was produced48. The 
method involves mild operating conditions, atmospheric pressure 
and low temperatures (≤115  °C). Oxidation SPL, the most robust 
and established nanolithography method of this kind, is described 
in the next section.

Bias-induced SPL can involve other processes such as field-
induced deposition of matter39,49–50, current-induced transfor-
mations51,52 and desorption processes42,53, as well as the direct 
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deposition of charges54 or the inversion of the polarization of a 
local volume in a ferroelectric film55,56. The atomic-scale resolution 
potential of b-SPL is illustrated by experiments reporting the local 
electron-induced hydrogen desorption on a Si(100) surface53. Using 
this method, clean and H-passivated regions on the surface have 
been produced. The chemical contrast between those regions has 
been combined to fabricate the smallest lithographically engineered 
electron devices5,57,58.

The electric field at the tip/surface interface can invert the polari-
zation of a small region in a ferroelectric film. This generates a non-
volatile ferroelectric domain. This mechanism has been proposed 
for data storage55,59,60. The non-destructive write–erase process has 
achieved areal densities of 3.6 Tbit inch–2.

Bias-induced SPL has also produced some other milestones such 
as the fabrication of the smallest pattern made at ambient pres-
sure and room temperature on a silicon surface61. It has also been 
applied to integrate dissimilar materials with nanoscale accuracy 
such as germanium patterns on silicon surfaces62. The potential of 
b-SPL goes beyond the field of nanolithography. The method has 
been applied to understand new processes to decompose stable 
chemical species such as carbon dioxide39. These results expand and 
strengthen the applications of SPL and nanochemistry45.

Oxidation SPL
The discovery of probe-based oxidation41 was shadowed by the 
more exciting experiments reporting either modifications62 or 
manipulations63 of surfaces with atomic-scale capabilities64,65. 
However, the generality and robustness of the underlying chemical 
process (anodic oxidation) has transformed Dagata’s observation 
into a reliable and versatile nanolithography approach for pattern-
ing and device fabrication42. Nanopatterning examples range from 
the generation of arrays of submicrometre lines and dots on crystal-
line surfaces66–68, self-assembled monolayers69–71 and polymers72 to 
the fabrication of nanoscale templates for the growth of single-mol-
ecule magnets73, proteins6 and nanoparticles74–76 to the directed self-
assembly of block copolymers77, polymer brush nanostructures78, 
carbon nanotubes79 or semiconductor nanostructures80. Examples 
of nanoscale devices and prototypes include, among others, single-
photon detectors81, photonic nanocavities82, quantum devices (such 
as quantum point contacts83,84, dots85,86 and rings87) and several gra-
phene devices88–92. A variety of transistors such as single-electron93, 
metal-oxide94 or nanowire field-effect transistors15,95 have been fab-
ricated by oxidation SPL (o-SPL). Other applications include the use 
of the local oxide as a coating to embed nanoparticles on a silicon 
surface96. Oxidation SPL is also contributing to bring a renewed 
interest to the physics of the water meniscus97,98. Oxidation SPL has 
received various names such as local oxidation nanolithography, 
scanning probe oxidation, nano-oxidation or local anodic oxidation.

The widespread academic use of o-SPL is explained by three 
features. First, the ability to nanopattern a wide variety of materi-
als ranging from metals to semiconductors to self-assembled mon-
olayers, and more recently to graphene or polymer-based resists. 
Second, its minimal technological requirements, which in combi-
nation with operation at room temperature and atmospheric pres-
sure conditions, makes oxidation SPL very attractive for academic 
research. Third, the method is capable of performing many tasks 
concurrently, for example, at the same time it can generate a thin 
dielectric, a mask for further etching or a template to direct the 
growth of molecular architectures.

Oxidation SPL is based on the spatial confinement of an anodic 
oxidation reaction between the tip and the sample surface (Fig. 5a). 
The oxidation process is mediated by the formation of a nanoscale 
water bridge99. In fact, due to the sequential character of o-SPL the 
generation of a nanopattern might involve the formation of multiple 
water bridges. The role of the water meniscus is twofold. It acts as a 
nanoscale electrochemical cell that provides the oxyanions by which 

the reaction takes place (Fig. 5b). Second, it confines the reaction 
laterally, that is, the size of the meniscus determines the resolution 
of the features obtained by this technique99. The polarity of the volt-
age is in such a way that the tip acts as the cathode (negative) and 
the sample surface is the anode (positive). Oxidation SPL can be 
either performed with the tip in contact with the sample surface or 
in a non-contact mode.

The electric field has three roles in tip-based oxidation42. It 
induces the formation of the water bridge (Fig. 5c). Second, it gener-
ates the oxyanions needed for the oxidation by decomposing water 
molecules. Third, it drives the oxyanions to the sample interface and 
facilitates the oxidation process100. Ultrasmall silicon oxide nano-
structures with a lateral size between 10 and 100 nm and a height 
in the 1 to 10 nm range have been generated using this technique. 
The main parameters that control the local oxidation process are the 
applied voltage (from a few volts to 20–30 V), the relative humidity 
(20%–80%), the duration of the process (10 μs–10 s), the tip–sample 
distance (2 nm–5 nm) and the scanning speed (0.5 μm s–1–1 mm s–1).

Molecular architectures. Selective oxidation and/or complete 
removal of self-assembled monolayers and subsequent surface func-
tionalization of the oxidized regions have enabled the fabrication 
of nanoscale architectures6,101. Figure 5d,e illustrates the process to 
pattern linear arrays of proteins with a size that matches the molec-
ular size of the protein, in this case ferritin. The process requires 
the functionalization of the silicon surface with an octadecyltrichlo-
rosilane monolayer, then o-SPL is applied to pattern several silicon 
oxide lines on the surface. The process also removes the self-assem-
bled monolayer in the regions exposed to the field. The patterned 
sample is immersed in a solution containing aminopropyltriethox-
ysilane (APTES) molecules until an APTES monolayer is deposited 
in the patterned lines. Then the sample is exposed to a solution con-
taining ferritin molecules. At a pH above 5.3 the ferritin is nega-
tively charged. Consequently, ferritin will be attracted towards the 
protonated amino-terminated regions of the APTES patterns. The 
ferritin molecules attached to the neutral octadecyltrichlorosilane 
areas are easily removed by rinsing the sample in buffer. The com-
plete process gives rise to the formation of arrays of proteins with an 
accuracy that matches the size of the protein.

Nanoelectronic devices. To illustrate how o-SPL is applied to fab-
ricate nanoelectronic devices we show some of the steps in the for-
mation of silicon nanowire transistors and graphene quantum dots. 
The fabrication of a silicon nanowire transistor involves the pattern-
ing of a narrow oxide mask on top of the active layer of a silicon-
on-insulator substrate15,61,102 (Fig. 6a). The unmasked silicon layer is 
then removed by using wet or dry chemical etching procedures. The 
local oxide protects the underneath silicon from the etching. This 
leaves a single-crystalline silicon nanowire with a top width that 
matches the width of the oxide mask. Finally, the silicon nanowire is 
contacted to micrometre-sized platinum source and drain contacts 
by either photolithography or electron-beam lithography (Fig. 6b). 
The silicon nanowire can be transformed into a field-effect transis-
tor by a third electrode that is usually at the back of the silicon sub-
strate (Fig. 6c). This scheme has enabled the fabrication of label-free 
and ultrasensitive biosensors for the detection of the early stage of 
recombinational DNA repair by the RecA protein103.

The fact that o-SPL does not require the use of resists that could 
modify the electronic properties of graphene has propitiated its 
application to fabricate a variety of graphene nanoscale devices. A 
graphene-based quantum dot has been fabricated90 by locally oxidiz-
ing a graphene layer deposited on a silicon oxide surface (Fig. 6d). 
The microelectrodes are established by using shadow masking 
techniques. The quantum dot structure is generated by locally oxi-
dizing regions in the graphene layer. Figure  6e shows the source 
and drain electrodes as well as the gates and the region occupied 
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by the quantum dot. The differential conductance as a function 
of the source and gate voltages shows the characteristic Coulomb 
diamond structure (Fig. 6f).

Additional SPL methods
The versatility of force microscopy to modify and manipulate 
surfaces (Fig.  1b) has generated some other approaches such as 
nanomachining104, nanoscale dispensing105 or dip-pen nanolithog-
raphy106. Mechanical SPL (nanomachining) uses the mechanical 
force exerted by the tip to induce the selective removal of material 
from a surface. It has been successfully applied to modify solid sub-
strates107 and films of polymers108. The same approach has also been 
used for the local removal of parts of self-assembled monolayers 
and Langmuir–Blodgett films (nanoshaving)109. The limiting factor 
in creating reproducible patterns is the stability of the tip, which 
is prone to deformation and contamination from the debris of the 
removed material.

Nanoscale dispensing uses hollow cantilevers comprising 
integrated fluidic channels to deliver small liquid drops onto a 
surface110. The fluidic channel allows soluble molecules to be dis-
pensed through the hollow AFM tip. One remarkable application of 
nanoscale dispensing has been the stimulation of single living cells 
under physiological conditions105.

Dip-pen SPL (dp-SPL) offers high resolution and registration 
with direct write patterning capabilities106. This lithography func-
tions by facilitating the direct transport of molecules to surfaces, 
much like the transfer of ink from a macroscopic dip-pen to paper. 
By depositing several different kinds of molecule on the same 
substrate, dp-SPL can pattern a range of desired chemistries with 
sub-100-nm control. Dip-pen SPL is compatible with a variety of 
inks, including organic and biological111 molecules, polymers, col-
loidal particles and metal ions. The intrinsic linear writing speed of 
dp-SPL depends on molecular transport between the probe tip and 
the surface, and thus it is limited by mass diffusion. The tip tem-
perature can be used to control the ink deposition112. The rise of the 
temperature of the tip causes solid ink to melt and wet the tip. The 
advantage of this approach is twofold. The ink flow can be turned 
on and off at will whereas previous dp-SPL techniques apply ink to 
the surface as long as the tip stays in contact with it. Furthermore, 
the rate of the ink diffusion is tunable by controlling the tip tem-
perature. It has been shown that poly(N-isopropylacrylamide), 
a type of protein adhesion molecule, can be reproducibly written 
from the melt112. These nanostructures reversibly bind and release 
proteins when actuated through the hydrophilic–hydrophobic 
phase transition. This approach has also been applied to fabricate 
graphene nanorribons113.

200 nm

APTES Ferritin deposition

pH 6.5
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d e

OTS

o-SPL

M + nH2O MOn + 2nH+ + 2ne−

2H+
(aq.) + 2e− H2

Figure 5 | Oxidation scanning probe lithography. a, The oxidation process used in oxidation SPL (o-SPL) is mediated by the formation of a water bridge 
that provides the oxyanions. The effective width of the liquid bridge together with the kinetics controls the feature size. b, General electrochemical 
reactions in local anodic oxidation. c, Molecular dynamics snapshot of the field-induced formation of a 2.5-nm-long water bridge (1,014 water molecules). 
Oxygen atoms are in red and hydrogen in white. d, Main steps to pattern ferritin proteins on a silicon surface by combining bottom-up electrostatic 
interactions and local oxidation. The silicon oxide pattern made on the silicon surface is shown in orange. OTS, octadecyltrichlorosilane; APTES, 
aminopropyltriethoxysilane. e, AFM image of an array of ferritin molecules. The bottom-right inset shows an AFM phase image of a section containing 
individual ferritin molecules. The space within the arrows is 10 nm. The top-right inset illustrates the structure of the ferritin. The polypeptide shell of the 
protein is shown in blue. Figure reprinted with permission from: b, ref. 42, © Royal Society of Chemistry; c, ref. 97, © American Chemical Society; d,e, ref. 6, 
© Wiley.
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Large-area patterning
One of the main drawbacks of SPL techniques for technological 
oriented applications is the limited throughput due to the serial 
writing process and the required interaction timescales (Fig. 2b). 
Recent developments in wide-area-operation high-speed AFM30,114 
could enhance the serial writing and imaging speed, if the pixel 
times are not limited by the physics of the writing process. More 
effectively, parallelization could enhance the throughput by a fac-
tor proportional to the number of cantilevers operating in paral-
lel. Functional parallel probe arrays have been demonstrated in 
a variety of schemes ranging from fully passive systems with no 
actuation control and read-out capability at the individual canti-
lever level to fully controlled systems at the individual cantilever 
level. For fully passive systems, dp-SPL has demonstrated parallel 
operation of 55,000  levers replicating the same nanostructures115. 
A more recent intermediate step without integrated read-out 
employs active write control by either thermal expansion or optical 
addressability for polymer-pen lithography116 and beam-pen opti-
cal lithography117, respectively. These systems have shown the abil-
ity to pattern cm2 areas, however, in situ inspection is difficult and 
resolution is limited.

A typical single-cantilever AFM employs an optical-lever deflec-
tion scheme that cannot be easily scaled up to large cantilever arrays 
due to the complexity in the optical set-up, signal processing and 
restrictions on cantilever geometries118. For fully controlled paral-
lel systems integration of actuators and sensors into the individual 
cantilevers is required. For a recent review of actuation and sens-
ing schemes see ref.  119.  At least three terminals are needed per 
cantilever to control read and write processes separately, which 

poses an integration challenge for high numbers of parallel levers. 
Such a fully integrated parallel system was developed for thermo-
mechanical data-storage applications by IBM demonstrating paral-
lel read and write operation at 32-nm full-pitch resolution120. The 
tool used a similar cantilever design as shown in Fig. 3a solving the 
integration challenge by transfer of the cantilevers onto a comple-
mentary metal–oxide–semiconductor chip. Both t-SPL and tc-SPL 
could directly benefit from the array technology developed for the 
data-storage application. Array sizes up to 64 × 64 cantilevers have 
been achieved, which would lead to a throughput increase by a 
factor of more than 4,000. Together with the high linear speed of 
t-SPL, throughput values of >108 μm2 h–1 are within reach, which 
would open up new application fields such as nanoimprint master 
or optical mask fabrication.

Recently, parallel operation of a five-tip array for tc-SPL was 
demonstrated in a commercial AFM set-up (Fig.  4e)22. The same 
array is used in situ to pattern and image microstructures, nanow-
ires and complex patterns of a conjugate luminescent semicon-
ducting polymer (Fig.  4e), as well as conductive nanoribbons of 
reduced graphene oxide. Resolution down to sub-50 nm over areas 
of 500  μm2 and parallel complex three-dimensional patterning of 
conjugated polymers have been demonstrated.

Large-area patterning has also been addressed by using printing-
based methods. Here, the use of a stamp facilitates the upscaling 
of the processes involved in some SPL methods61,74,121,122. In this 
approach, a single patterning step, say anodic oxidation in o-SPL, 
is replicated multiple times by using a stamp containing billions of 
nanostructures. The contact electrochemical replication scheme 
has enabled the patterning of alternating hydrophobic/hydrophilic 
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domains on octadecyltrichlorosilane monolayers122. However, in 
this approach the positioning capabilities of SPL are lost.

Outlook
Scanning probe lithography has experienced a quiet evolution over 
the past twenty years. Scanning probe lithography techniques offer a 
variety of physical and chemical approaches to modify a surface, giv-
ing rise to a wealth of methods for patterning. These methods have 
drawn considerable scientific attention for different reasons. On one 
hand, SPL is an alternative method to pattern surfaces or devices 
with nanoscale precision. On the other hand, SPL enables access to 
phenomena at the nanoscale with an easiness that is not paralleled 
by other techniques. Those features, together with the wide range of 
materials that can be patterned, the ability to pattern in ambient con-
ditions and the relatively few requirements to transform a conven-
tional AFM into a nanolithography instrument explain the interest 
and relevance of SPL in the scientific community. An illuminating 
example of the versatility of SPL is the recent nanofabrication of 
devices based on novel two-dimensional materials.

The interest and use of SPL in scientific research is established 
and expanding, however more technological applications still need 
to be fulfilled. To progress out of the research environment and into 
a technology used for prototyping applications, the method has to 
achieve sufficient throughput and reliability for day-to-day work. 
Some milestones towards this goal have been achieved just recently. 
In particular, the closed-loop-lithography framework may lead to 
SPL tools that operate autonomously and thus with minimal learn-
ing and preparation overhead for the user. The particular strength 
of SPL systems of giving the user a direct feedback on the result of 
the operation will play a major role in the success of commercial 
systems. Other challenges are still to be resolved. Most prominently, 
parallelization and tip lifetime, which although greatly enhanced for 
the approaches discussed in this Review, still need to be extended 
to meet user needs for patterning cm2 areas at high speeds, high 
resolution and high reproducibility.

The tip lifetime defined in terms of its chemical nature and geom-
etry is a factor that controls and determines both the reproducibility 
and the throughput in SPL. This Review provides an update of SPL 
methods based on either physical or chemical processes that better 
preserve the tip’s geometry and chemical nature. For physical pro-
cesses, this is because the force is exerted over polymers with elastic 
moduli orders of magnitude smaller than those of the tip materials; 
for chemical processes, this is because the process happens mostly 
on the sample surface.

The limited throughput of SPL methods is being addressed by 
two different approaches. The first involves the use of arrays of sev-
eral SPL cantilevers, which can write and read in parallel. In SPL, the 
actuation and topography sensing scheme can be implemented into 
the cantilever, which occupies an area of less than 100 × 100 μm2. 
This is a unique and ideal condition for parallelization. Furthermore, 
the resolution is typically determined by the shape of the tip and 
thus it is not impaired by the existence of neighbouring levers. Thus, 
in SPL parallelization the resolution is conserved while the through-
put scales linearly with the number of cantilevers. The major chal-
lenges towards a highly parallel system are engineering tasks for 
the reliable fabrication of cantilever arrays and for a solution of the 
wiring problem. Both can be solved as it has been demonstrated in 
IBM’s probe data-storage project or in other more recent demon-
strations of linear arrays of thermal cantilevers. In the near future, 
it is expected that linear arrays of 30 thermal cantilevers can be 
integrated in a commercial AFM, with the goal of writing and then 
reading more than 1 million pixels in 1 second. Because the distance 
between the cantilevers in the array is 100 μm, and the scan range of 
commercial AFMs is typically about 100 μm, 30 cantilevers will be 
able to nanopattern 3 mm × 0.1 mm in a single patterning action. 
Larger areas could be addressed by moving the sample and using 

fast stitching procedures. For example, with existing technology SPL 
could produce graphene nanoribbons on functionalized graphene 
at speeds 104 times faster than electron-beam lithography. The sec-
ond approach is less sophisticated, and it is based on replicating the 
processes involved in SPL by using micro or nanopatterned stamps.

The capability of the force microscope to provide chemical 
and nanomechanical information at the atomic123, molecular and 
nanoscale124,125 levels could also be incorporated in the SPL method-
ology. Those methods could provide an in situ determination of the 
physical and chemical properties of the fabricated nanostructures. 
This is another factor that will support the evolution and expansion 
of SPL. 

In conclusion, SPL is approaching a stage where proof-of-prin-
ciple academic experiments can become widespread technology. 
The large variety of materials that can be patterned by SPL, from 
polymers to proteins to graphene, the high resolution, the ability 
to work in a range of environmental conditions, from liquid to air 
and vacuum, and the potential to pattern chemistry and topography 
simultaneously make SPL an attractive nanofabrication method for 
the next generation of materials and devices.
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